Insights into the mechanism of electrochemical ozone production via water splitting on the Ni and Sb doped SnO2 catalyst.

نویسندگان

  • Gregory Gibson
  • Ziyun Wang
  • Christopher Hardacre
  • Wen-Feng Lin
چکیده

The H2O splitting mechanism is a very attractive alternative used in electrochemistry for the formation of O3. The most efficient catalysts employed for this reaction at room temperature are SnO2-based, in particular the Ni/Sb-SnO2 catalyst. In order to investigate the H2O splitting mechanism density functional theory (DFT) was performed on a Ni/Sb-SnO2 surface with oxygen vacancies. By calculating different SnO2 facets, the (110) facet was deemed most stable, and further doped with Sb and Ni. On this surface, the H2O splitting mechanism was modelled paying particular attention to the final two steps, the formation of O2 and O3. Previous studies on β-PbO2 have shown that the final step in the reaction (the formation of O3) occurs via an Eley-Rideal style interaction where surface O2 desorbs before attacking surface O to form O3. It is revealed that for Ni/Sb-SnO2, although the overall reaction is the same the surface mechanism is different. The formation of O3 is found to occur through a Langmuir-Hinshelwood mechanism as opposed to the Eley-Rideal mechanism. In addition to this the relevant adsorption energies (Eads), Gibb's free energy (ΔGrxn) and activation barriers (Eact) for the final two steps modelled in the gas phase have been shown, providing the basis for a tool to develop new materials with higher current efficiencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrodeposited Co-Pi Catalyst on α-Fe2O3 Photoanode for Water-Splitting Applications

Optoelectronic properties of hematite (α-Fe2O3) as a photoanode and the required over-potential in photo-assisted water splitting has been improved by presence of Co-Pi on its surface. In order to increase the lifetime of the photogenerated holes and lower the applied bias, cobalt-phosphate (Co-Pi) on nanostructured α-Fe2O3 by electrodeposition was de...

متن کامل

Dextran grafted nickel-doped superparamagnetic iron oxide nanoparticles: Electrochemical synthesis and characterization

In this paper, polymer grafted nickel-doped iron oxide nanoparticles are fabricated via an easy, one-step and fast electrochemical procedure. In the deposition experiments, iron(II) chloride hexahydrate, iron(III) nitrate nonahydrate, nickel chloride hexahydrate, and dextran were used as the bath composition. Dextran grafted nickel-doped iron oxides (DEX/Ni-SPIOs) were synthesized with applying...

متن کامل

Oxide-supported IrNiO(x) core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting.

Active and highly stable oxide-supported IrNiO(x) core-shell catalysts for electrochemical water splitting are presented. IrNi(x)@IrO(x) nanoparticles supported on high-surface-area mesoporous antimony-doped tin oxide (IrNiO(x)/Meso-ATO) were synthesized from bimetallic IrNi(x) precursor alloys (PA-IrNi(x) /Meso-ATO) using electrochemical Ni leaching and concomitant Ir oxidation. Special emphas...

متن کامل

Photocatalytic degradation of phenylephrine hydrochloride in aqueous solutions by synthesized SnO2-doped ZnO nanophotocatalyst

ZnO and SnO2-doped ZnO nanoparticles were prepared by a sol–gel method for the first time. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the ZnO and SnO2-doped ZnO samples. Advanced oxidation processes (AOPs) have proved very effective in treatment of the various hazardous organic pollutants such as surfactants and pharmaceuticals...

متن کامل

Photocatalytic degradation of phenylephrine hydrochloride in aqueous solutions by synthesized SnO2-doped ZnO nanophotocatalyst

ZnO and SnO2-doped ZnO nanoparticles were prepared by a sol–gel method for the first time. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the ZnO and SnO2-doped ZnO samples. Advanced oxidation processes (AOPs) have proved very effective in treatment of the various hazardous organic pollutants such as surfactants and pharmaceuticals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 5  شماره 

صفحات  -

تاریخ انتشار 2017